If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+8X+19=6
We move all terms to the left:
X^2+8X+19-(6)=0
We add all the numbers together, and all the variables
X^2+8X+13=0
a = 1; b = 8; c = +13;
Δ = b2-4ac
Δ = 82-4·1·13
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{3}}{2*1}=\frac{-8-2\sqrt{3}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{3}}{2*1}=\frac{-8+2\sqrt{3}}{2} $
| N+89n=180 | | 39-9y+4y=14 | | –43=–5(a+11)+2a | | g^2+36=85 | | x^2(-10x)^2=101 | | 2+j=2 | | (x-1)(x-7)=156 | | 6s+9=69 | | 5y+17=2y-25* | | 26h+h-18h-6h+7h=30 | | 5x+8-2x=3(2x-4) | | y/5=-57 | | -4u-1=-13 | | M={n/nϵZ,-2≤n≤6} | | 6.7n-4=31 | | 6-5n=1 | | 7-2i=-3 | | 44k-19k-6k-k-6=30 | | 7(c–11)=–35c=4c=6 | | -1/3=-5/6+p | | 5.8=2m-14 | | 2(5+y)=17 | | -4(3x-1)-5=-2(6x+3)+5 | | 7k^2+1=4K | | x+3(14/4-3/4x)=13 | | (2x+30)+40=180 | | 20=10(4+z) | | x-$420.18=$75.51 | | 8x+21=53 | | 4-11b+7=40 | | 3-x+13=32 | | -2z^2-10z+20=-3z^2 |